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A new technique has been developed to deconvolve and
quantify the mass concentrations of hydrocarbon-like and
oxygenated organic aerosols (HOA and OOA) using
highly time-resolved organic mass spectra obtained with
an Aerodyne Aerosol Mass Spectrometer (AMS). This
technique involves a series of multivariate linear regressions
that use mass-to-charge ratios (m/z’s) 57 (mostly C4H9

+)
and 44 (mostly CO2

+)sthe identified AMS mass spectral
tracers for HOA and OOA, respectivelysas the initial principal
components. Two algorithms have been developed:
algorithm 1 is based solely on m/z 44 and m/z 57, and
algorithm 2 is an iterative procedure expanded from algorithm
1. This technique was applied to the AMS organic
aerosol data acquired at the EPA Pittsburgh Supersite
during September 2002. The reconstructed organic
concentrations () HOA + OOA) agree well with the
measured values (r2 ) 0.997, slope ) 0.998), and the
reconstructed organic data matrix (size ) 3199 time steps
× 300 m/z’s) explains 99% of the variance in the measured
time series. In addition, the extracted mass spectrum of HOA
shows high similarity to those of diesel exhaust, lubricating
oil, and freshly emitted traffic aerosols observed in
urban areas, while the spectrum of OOA closely resembles
those of aged organic aerosols sampled in rural areas
and also shows similarity with the spectrum of fulvic acids
a humic-like substance that is ubiquitous in the environment
and has previously been used as an analogue to represent
polyacid components found in highly processed and oxidized
atmospheric organic aerosols. There is evidence for the
presence of a third component, although its contribution to
the total organic signal appears to be small in this

study. The most important result is that m/z 44 and m/z 57
are reliable AMS mass spectral “markers” that provide
the “first guess” for algorithm 2 which allows the quantitative
description of the organic aerosol concentration and
mass spectra over a period of 16 days in a major urban
area and allows the extraction of mass spectra of OOA and
HOA that can be interpreted chemically. These findings
indicate the potential of performing organic source
apportionment on the basis of total particle mass, rather
than on the basis of organic tracer compounds that contribute
a small fraction of this mass.

Introduction
Organic material comprises a significant, yet poorly char-
acterized, fraction of the fine particles in the atmosphere
(1-4). The number and complexity of particulate organic
compounds make it a significant challenge to fully charac-
terize their molecular identities (1, 2). Analysis of a large
number of molecules, for example, typically accounts for
only a minor fraction of the organic carbon in aerosols
(5-7). As a result, there is only a limited understanding of
the chemistry, sources, and processing of organic aerosols,
and assessments of their impacts on climate, visibility, and
human health remain notably uncertain (1, 6, 8, 9).

Organic aerosols originate from many different natural
and anthropogenic sources and processes. Primary organic
aerosols (POA) are those emitted directly into the atmosphere
in particle form, e.g., from fossil fuel and biomass combustion,
while secondary organic aerosols (SOA) are formed from
gaseous precursors through gas-phase (1, 2, 6), particle-phase
(10), or aqueous-phase reactions (11, 12). Due to their
different origins and formation mechanisms, POA and SOA
usually demonstrate very different chemical and micro-
physical properties (13-18). Therefore, to design effective
fine particle control strategies and to better evaluate the roles
of organic aerosols in regional and global climate we must
understand the concentrations, properties, and sources of
these two organic aerosol types (6).

Three general techniques are available to estimate the
relative contributions of POA and SOA to ambient particle
mass. One is “source-oriented” chemical transport models
(CTMs) that simulate atmospheric transport and chemical
reactions (6, 19-21). Another is “source-receptor” methods
that interpret ambient measurements with a mathematical
model that uses distinctive tracers and previous knowledge
of the tracer concentrations in all known sources (6, 22, 23).
Commonly applied organic source-receptor methods include
the organic molecular marker chemical mass balance (CMB)
method (22-24) and the organic carbon (OC) to elemental
carbon (EC) ratio method (25-29). The third is receptor-
only methods, which are conceptually similar to principal
component analysis (30) and use statistical multivariate
techniques to extract source information from the time series
of multiple simultaneous measurements. Commonly used
receptor methods for air pollution studies include Positive
Matrix Factorization (PMF) (31) and UNMIX (32).

Unlike “source-oriented” CTMs, source-receptor and
receptor methods do not require detailed information on
meteorology or emission inventories but instead perform
source apportionment using ambient measurements as
inputs (6). So far, receptor methods have been relatively
successful with POA applications but show limited capability
to distinguish the sources of SOA components unless
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combined with CTMs (6). For these reasons, in both CMB
(20, 23, 33) and OC/EC methods (25-29), the SOA concen-
tration is usually inferred as the difference between observed
organic aerosol mass concentrations and estimated POA. A
major drawback of this approach is that the accuracy of
predicted SOA concentration is poor when POA values are
uncertain. Recently, tracers for SOA, such as aromatic diacids,
have been proposed (24, 34, 35), but the ability to use them
to quantitatively estimate SOA concentrations has not yet
been demonstrated.

Methods that are capable of estimating the contributions
of SOA and POA independently are needed. In this study we
have developed a new technique that can determine the mass
concentrations of hydrocarbon-like and oxygenated organic
aerosols based on the mass spectra of ambient particles
acquired by an Aerodyne Aerosol Mass Spectrometer (AMS).
The AMS is a real-time aerosol instrument that samples, sizes,
and analyzes nonrefractory submicron particles (NR-PM1)
with high sensitivity and time and size resolution (18,
36-44). It is currently the only real-time instrument with the
potential to provide quantitative and size-resolved organic
aerosol data with a time resolution of minutes.

The quantitative capabilities of the AMS arise from the
combination of a quantitative aerosol sampling using an
aerodynamic lens (38, 45-47) and the separation of particle
vaporization and vapor ionization processes (36, 38). The
AMS employs thermal vaporization (usually at 600 °C) on a
porous tungsten conical surface operated under high vacuum,
followed by 70 eV electron impact (EI) ionization. Matrix
effects due to charge-transfer reactions occurring during
collisions between vapor molecules and ions (48) are
eliminated due to the high vacuum conditions under which
ionization takes place. If the species are vaporized intact,
their AMS spectra are generally similar to the standard EI
spectra such as in the NIST database (49). However, thermally
labile species may undergo decomposition upon vaporization
or greater fragmentation due to the higher internal energy

acquired during vaporization. For these reasons the spectra
observed in the AMS may show greater fragmentation than
standard EI spectra (50) (and unpublished data from Philip
Silva, Utah State University).

The ion signal recorded by the AMS at each mass-to-
charge ratio (m/z) is a linear combination of those from
individual vaporized species in the analyte (36, 40). As such,
an AMS mass spectrum, which is a distribution of ion signals
with unit m/z resolution, typically between 1 and 300 m/z,
is essentially the linear superposition of the distinctive mass
spectra of individual species that produce signals. Currently,
a standard AMS data analysis method is available to
systematically deconvolve the ensemble AMS mass spectra
into partial mass spectra for distinct species or groups of
species, such as NO3

-, NH4
+, SO4

2-, Cl-, and organics (40).
The inputs to this mathematical method are isotopic ratios
of elements and laboratory-measured AMS fragmentation
patterns, e.g., for major gaseous species (N2, O2, Ar, H2O, and
CO2) and aerosol inorganic species. The fragmentation
patterns approach, however, only allows the extraction of
the mass spectra for total organics and provides no informa-
tion about subcomponents of organic aerosols.

The linearity inherent in the AMS organic mass spectra,
together with the high time resolution of their measurements,
provide the foundation for a multivariate “receptor-only”
analysis approach to unravel the main types of organic
aerosols present in the atmosphere. We present here a
technique of this nature. Our technique allows quantitative
deconvolution of AMS organic aerosol data from urban areas
into two major componentsshydrocarbon-like and oxygen-
atedsand provides information on their characteristics (mass
spectra, time evolution, and size distributions). This paper
focuses on the development and validation of the method
by applying the technique to the Pittsburgh Supersite data
set. The major findings regarding these two types of organic
aerosols in Pittsburgh will be presented separately (Zhang
et al., in preparation for Atmos. Chem. Phys.). Future papers

FIGURE 1. Time trends of (a) m/z 57 and typical combustion emission tracers (CO, NOx, EC) and (b) m/z 44 and PM1 SO4
2- (both from the

AMS) and (c) the average size distributions of m/z 44, m/z 57 and SO4
2- during the AMS deployment at the Pittsburgh Supersite.
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will extend the application of the technique to other urban,
rural, and remote locations in which AMS data has been
acquired.

Methods
Data Preparation. The AMS data set used in this study was
acquired during September 7th-22nd, 2002 from the main
site of the Pittsburgh Air Quality Study (PAQS) and EPA
Supersite. Detailed information on sampling, AMS operation,
and analysis for this data set is presented in two previous
papers (18, 51). The theory, underlying assumptions, and
technical details of the data analysis procedures have been
described previously (36, 39-41). The standard AMS data
analysis software and the computational codes for data
reduction and numerical analysis developed for this study
were written in Igor Pro 5 (Wavemetrics, Inc., Lake Oswego,
Oregon).

A total number of ∼3200 aerosol organic mass spectra
(averaging time ) 10 min initially and ) 5 min after September
12) were acquired in Pittsburgh. Each of them is expressed
as a 300-element vector, corresponding to the number of
mass-to-charge ratio channels scanned (i.e., m/z 1-300).
Note that only 270 out of the 300 m/z’s contain organic
signals. The other 30 (m/z’s 1-11, 14, 21-23, 28, 32-36,
39-40, 46-47, 149, 182-184, and 186) were omitted due to
either the lack of plausible organic fragments (e.g. m/z 3),
the overwhelming contributions from inorganic (e.g.,
m/z 39) or gaseous species (e.g., m/z 32), or the high
background level in the instrument (e.g., m/z 149) (40). In
addition, values of m/z’s 16, 17, 18, and 20 in the organic
mass spectral matrix were not calculated from the raw signals
at these channels due to the excessive interfering signals
from water but rather set to be proportional to the organic
signals at m/z 44, based on laboratory experiments (un-

published data from Philip Silva, Utah State University). The
intensity of each peak in a mass spectrum is expressed in
organic-equivalent mass concentration (org-eq, in µg m-3)
calculated from the raw signals in ions per second (Hz)
(36, 39-41). The org-eq concentration is defined here as the
mass concentration of organics that would produce the same
signal intensity (summed over all 270 m/z’s) as that observed
at one individual m/z. It differs from the nitrate-equivalent
mass concentration (NO3

--eq) in that the relative ionization
efficiency factor (RIE) for organics (36, 41) is applied to
NO3

--eq to yield org-eq concentrations. The sum of org-eq
concentrations of all m/z’s in an organic mass spectrum yields
the total organic mass concentration. We observed good
agreement between the AMS organic mass concentrations
and 2 h-averaged organic carbon data from a collocated
thermal optical transmittance carbon analyzer (Sunset Labs;
r2 ) 0.88; Slope (S) ) 1.69; N ) 82) and 24 h-averaged OC
data from filter samples post-analyzed with the thermal-
optical technique (r2 ) 0.64; S ) 1.45; N ) 14) (18). Similar
agreement has been observed in studies in Houston and
Tokyo (52, 53).

(a) Pretreatment for Organic Mass Spectral Data. Minor
filtering was performed on the raw organic mass spectral
data to reduce high-frequency noise. First, 6 mass spectra
(∼1 h worth of data) sampled during 18:50-19:40 on
September 8 were excluded from this study since they were
strongly influenced by a narrow organic plume of high
concentration (peak ≈ 50 µg m-3 vs 4 µg m-3 for the average
organic mass concentration of the entire study) (18). The
average mass spectrum of the component represented by
this plume shows more similarity to HOA than OOA (Sup-
porting Information, Figure S1).

We also reduced sporadic spikes in isolated m/z’s
(i.e., sudden surges in signal) for this study. A spike is

FIGURE 2. Covariance plots of (a) CO to organic m/z’s (orgi); (b) NOx to orgi; and (c) SO4
2- to orgi. The red triangles are the average

signal-to-noise ratios for orgi (SNRi). See section entitled “Notation” for notation.
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identified when a signal is at least 2 times larger than the
larger one of its two immediate neighbors in the time series.
Two reasons are likely responsible for the observed infrequent
spikes in some organic m/z’s. One is poor sampling statistics
of the AMS for particles with high mass but low number
concentration (∼1 cm-3) in the air. These particles produce
a spike in only one or a few m/z’s during an AMS averaging
time step (∼5 min) because the AMS scans only one m/z at
a time (see Table 2 of Bahreini et al. (54) for details on AMS
sampling statistics). Since the average mass spectrum and
time variation of the spikes look similar to the component
mass spectrum of hydrocarbon-like organic aerosols (see
section entitled “Linear Covariance Analysis” and Supporting
Information Figure S2), these particles appear to mainly
associate with combustion sources (e.g., traffic), which is
supported by results from AMS “chase-mode” sampling of
individual vehicles that show a larger mode in vehicle exhaust
(55). Another possible (less likely) reason for the occurrence
of the spikes is the bounce of larger particles in the AMS
detection region so that some could land on the electron
emission filament, evaporate, and be ionized with higher
efficiency. This phenomenon may explain some infrequent
larger signals observed during the AMS size calibration with
large (>800 nm) polystyrene latex spheres (PSLs) but has not
yet been conclusively observed in ambient sampling. Overall,
we found that these spikes occur rather infrequently
(<1% of the total data points) and account for only ∼1% of
the total organic signal. For these reasons they are un-
important for general applications, when only the mass
concentrations of total organics is concerned. However, they
represent a significant source of high-frequency variability
in the time series of some individual m/z’s and need to be
dealt with for improved statistical analysis. To do so, we
replaced these spikes with linear interpolation of the two

adjacent values. Finally we applied a 3-point boxcar smooth-
ing to the time series of each m/z to further reduce high-
frequency noise in the data.

These three filtering operations were validated by per-
forming exactly the same analysis on the treated and
untreated data sets (see the Supporting Information Figures
S3-S9 for analysis results on the untreated data set). The
first step, i.e., removing the 1-h organic spike on September
8, produces a small but noticeable change in the results of
this procedure, since the very high concentrations during
this spike resulted in large ø2 values that are weighed heavily
in the analysis. Removing this spike allows us to better capture
the characteristics of the HOA and OOA components during
most of the study. Significant (∼5-10%) improvements on
ø2’s and r2’s have been observed for the data set treated for
sporadic spikes compared to the untreated. The time trends
and mass spectra of HOA and OOA derived from the filtered
and unfiltered data are in good agreement (see Figure S10
in the Supporting Information), indicating that these pre-
treatments have effectively reduced artifacts due to limited
sampling statistics yet preserved most of the information
content of the data.

(b) Quantification of Particle Signal at m/z 28. A key feature
of the AMS is that it uses a thermal vaporizer, on which the
nonrefractory components of particles evaporate under high
vacuum (∼10-8 Torr) before electron impact (EI) ionization.
In field studies, the vaporizer is often operated at ∼600 °C,
a temperature required for the fast evaporation of ammonium
sulfate that is necessary to measure its size distribution. At
this temperature, thermally labile oxygenated organic com-
pounds may undergo pyrolysis, forming CO, CO2, H2O, and
other vaporized species that diffuse into the EI ionization
region (40, 50).

FIGURE 3. (a) Hourly averaged signal intensities (org-eq µg m-3) of m/z 44 and m/z 28 derived from the AMS P-TOF data. (b) Scatter plot
comparing the hourly averaged signal intensities of m/z 28 and m/z 44, the red line is the least-squares linear fit with the intercept forced
to zero. (c) Average size distribution of m/z’s 28 and 44 during a high signal-to-noise ratio period. A similar size distribution comparison,
albeit typically noisier, is observed during other time periods.
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Both CO and CO2 may produce signals at m/z 28 (CO+)
(49). However, gas-phase N2 also produces m/z 28 signal
(N2

+) and generally at an intensity more than 2 orders of
magnitude larger than particle signals during typical ambient
studies (40). Note that since the AMS inlet reduces gaseous
species by a factor of 107 (relative to the particles) gas-phase
CO is not detectable and gas-phase CO2 represents a very
small contribution to m/z 28 at their typical ambient
concentrations (40). Since the m/z 28 signals are almost pure
N2

+ they are typically used as the “internal standard” in AMS
quantification to correct for variations in sampling flow rate
and detector sensitivity. For these reasons, the entire m/z 28
signal is conventionally assigned to gaseous N2

+ signals and
is not reported in the AMS spectra of particles.

The particulate CO+ signals (produced from oxygenated
species) can be separated from the gaseous N2

+ signals based
on their very different flight velocities in the AMS (18). We
therefore extracted the size distribution and mass concen-
tration of particulate m/z 28 signals from the AMS particle
time-of-flight (P-TOF) data using the technique developed
by Zhang et al. (18). Because of the substantial tailing of the
gaseous N2

+ signals into the particle region, the subtracted
particulate m/z 28 signals are much noisier than the other
organic signals.

(c) Error Estimation and Signal-to-Noise Ratio Calcula-
tions. Errors associated with the mass spectral signals were
estimated based on electronic noise and ion counting
statistics (36, 39). As the mass spectral signals, the unit of
errors is expressed as org-eq (µg m-3). The signal-to-noise
ratio (SNR) of a given signal is defined as the ratio of its
intensity to the corresponding estimated error. The SNR of
the total organic mass concentration is calculated based on
the detection limit of the organic measurement (D.L. )
0.15 µg m-3), which was estimated from several periods in
which particle-free ambient air was sampled into the AMS
during the study (18).

Mathematical Deconvolution Techniques. (a) Notation.
Throughout this text, the following mathematical notation
is used (30). Matrices are symbolized with bold uppercase
letters and vectors with bold lowercase letters. Row vectors
are marked with a prime (′) in order to be distinguished from
column vectors. Scalar quantities and elements of vectors or
matrices are represented by lowercase italic letters. The hat,
“∧”, above a quantity (vector, matrix, or scalar) indicates
that it is calculated or estimated, rather than measured.

The entire organic mass spectral data set is expressed as
a matrix of Nt rows by Ni columns (designated as ORG; in
org-eq µg m-3), in which each row corresponds to a time
step (t) and each column corresponds to a mass-to-charge
ratio (i). In other words, each row in ORG is a mass spectrum
at a given point in time, and each column the time series of
the org-eq mass concentration of a specific m/z. Specific
quantities related to the ORG matrix are denoted as follows:

ORGt,i is the tth row and the ith column element in ORG,
containing the org-eq concentration (µg m-3) of the fragment
m/z ) i measured at time step t.

orgt′ is the tth row vector (also called “m/z vector”) in
ORG, i.e., the mass spectrum of organic aerosols measured
at time t. For example, org′1000 is the organic mass spectrum
recorded in time step 1000 (i.e., 10:00 A.M. - 10:05 A.M. on
9/12/2002 for the Pittsburgh study). The factor space of orgt′,
i.e., the number of m/z channels scanned, is Ni dimensional
(Ni ) 270 for the Pittsburgh data set).

orgi is the ith column vector (also called “time series
vector”) in ORG, i.e., the time series of the fragment
m/z ) i of the entire study. For example org44 and org57

denote the time series of m/z 44 and m/z 57, respectively.
The factor space of orgi, i.e., the number of mass spectra
(time steps) measured, is Nt dimensional (Nt ) 3199 for the
Pittsburgh data set).

om is the time series of total organic mass concentrations;
it equals the sum of orgi, i.e.

ms′ is the average mass spectrum of organics of the entire
period

OR̂G is an estimation of ORG, e.g., calculated using a
linear model. Similarly, or̂gi and or̂gt′ are the estimates of
orgi and orgt′, respectively, from the linear model.

(b) Mathematical Formulation. Given the linearity inher-
ent in the organic mass spectra from an AMS, multivariate
factor analysis can be used to investigate the major com-
ponents that contribute to the total signals. The physical
basis of this type of analysis is mass conservation (30). The
mass balance equation for ORG (the Nt by Ni mass spectral
matrix) is expressed as

where C is an Nt by Nc matrix containing the time series of
the mass concentration of each of Nc components, MS is an
Nc by Ni matrix containing the component mass spectra,
and E is the error (residual) matrix. Therefore, by solving for
C and MS, one may be able to extract the mass concentrations
and mass spectra of major organic aerosol “factors”, each of
which may be due to an individual source or to several sources
that covary in time or that have very similar chemical
compositions.

(c) Custom Solution Procedure. Several multivariate
techniques such as factor analysis (FA)/principal component
analysis (PCA) (30, 56), positive matrix factorization (PMF)
(31), and/or UNMIX (32) can be used to estimate C and MS.
PCA has been used previously in the analysis of an AMS lab
study (57). However, to yield physically meaningful results,
factor analysis techniques usually involve a rather arbitrary
proceduresrotation of the principal factor axis (e.g. “varimax”
rotation)sthat potentially makes the results questionable
and has been the subject of much debate (30, 58, 59). In this
study, instead of running a standard PCA-type technique,
we take advantage of our a priori understanding of the AMS
organic data and use two mass spectral marker peaks
(m/z’s 44 and 57) as the first-guess principal components.
Iterative multiple multivariate linear regressions along the
row and column dimensions of the organic matrix are then
used to extract the component mass spectra and refine the
component time series. Note that the major assumptions for
factor analysis modeling listed in section 24.1.2 (p 1262) of
Seinfeld and Pandis (58) also hold for this study.

Two simple multivariate linear regression algorithms have
been developed. Algorithm 1 performs least-squares fits to
the time series of organics mass concentration (om) and to
the time series of individual m/z’s (orgi), as a linear
combination of the measured time series of m/z’s 44 and 57
(i.e., org44 and org57, respectively)

where, a, b, ai, and bi are the fitted parameters, E and Ei are
the residual vectors (of dimension Nt), and the subscript i
represents any m/z from 1 to Nm. We observe that a ≈ Σi)1

Ni ai

and b ≈ Σi)1
Ni bi for this study.

om ) ∑
i)1

Ni

orgi (1)

ms′ )
1

Nt
∑
t)1

Nt

(orgt′) (2)

ORG ) C ‚ MS + E (3)

om ) a ‚ org44 + b ‚ org57 + E (4)

orgi ) ai ‚ org44 + bi ‚ org57 + Ei (5)
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Row vectors a′ and b′ are obtained by compiling ai and
bi

where Ni is the number of m/z’s in the matrix. We derive the
component mass spectra of OOA and HOA by normalizing
a′ and b′ to the sum of their respective elements (i.e., Σi)1

Ni ai

and Σi)1
Ni bi, respectively). Note that the numeric intensity of

an m/z peak in these mass spectra is its percentage of the
summed intensity of all peaks (i.e., % of Σm/z). This is different
from scaling the largest (“base”) peak to 100 (i.e., relative
intensity), as is commonly done in mass spectrometry
(49, 60).

In algorithm 2, a′ and b′ are subsequently used to
reconstruct each measured mass spectrum and thus produce
two column vectors, c and d

where ct and dt are the fitted parameters, the subscript t
signifies a time step, and Et′ is the residual vector. In principle,
c and d are the improved time series of OOA and HOA,
respectively, and therefore supersede org44 and org57 to derive
improved OOA and HOA component mass spectra

Equations 8 and 10 are the building blocks of algorithm
2, which iteratively generates a sequence of a′, b′, c, and d
vectors by performing least-squares linear regressions on
ORG alternatively along the row dimension and the column
dimension:

where n indicates the number of iterations.
The performance of both algorithms is evaluated by

comparing E, Ei, and Et′ to the corresponding analytical
uncertainties, which are defined as the detection limits or 3
times the estimated errors (see section entitled “Error
Estimation and Signal to-Noise Ratio Calculations”).

(d) Calculations of Reconstructed Matrix and Residuals.
The organic matrix reconstructed for a given iteration (n),
OR̂G(n), is calculated from the corresponding row vectors,
c(n) and d(n), and column vectors, a′(n) and b′(n):

The tth row and the ith column element of OR̂G(n) is calculated
as

where, respectively, ct
(n) and dt

(n) are the tth elements in c(n)

and d(n), and ai
(n) and bi

(n) are the ith elements in a′(n) and

b′(n). org44 and org57 are equivalent to c(1) and d(1). The residual
of a fit is calculated as the difference between measured and
reconstructed values. To avoid possible under-representation
of the residual of organic mass concentration, which is caused
by the cancellation of positive and negative values, we also
calculated the absolute residual of the reconstructed vs
measured organic mass concentration as the sum of the
absolute values of the errors at each m/z (Organicst

resid):

(e) Statistical Evaluation. Pearson’s r is used extensively
in this study to evaluate the strength of an observed
correlation. However, since r is ignorant of the individual
distributions of the two variables, by itself is a rather poor
statistic for deciding the statistical significance of a correlation
(61). We therefore calculated p-values, the probability of a
null hypothesis, to evaluate the statistical significance of each
observed r (61). A small p-value indicates that the degree of
correlation signified by r is statistically significant (61). For
this study all calculated p-values are substantially less than
10-3 (,0.1%), indicating that every r value reported is
statistically significant. The p-values are thus not reported
to avoid clutter.

Results and Discussion
Identification of Mass Spectral Tracers for Hydrocarbon-
like and Oxygenated Organics. (a) Summary of Previous
Evidence. According to laboratory and field studies, m/z 44
(most likely CO2

+) is frequently a major peak in the AMS
mass spectra of oxygenated organic species, (41, 50) and
m/z 57 (mostly likely C4H9

+) is a major peak in the spectra
of hydrocarbons and is typically associated with combustion
exhaust (41, 44, 51, 55, 62). m/z 57 in AMS aerosol spectra
often increases during the rush hours in urban areas, while
m/z 44 usually dominates the spectra of heavily oxidized
organic particles from rural areas and increases in the
afternoon when photochemistry is more intense (18, 41, 51).
In addition, the size distribution of m/z 44 in ambient particles
is generally dominated by the accumulation mode and closely
resembles that of sulfate (18, 41, 51, 62, 63), whereas that of
m/z 57 in urban areas almost always displays a prominent
ultrafine mode that is clearly associated with vehicular
emissions (18, 41, 44, 51, 55, 62, 63). In view of these facts
m/z 57 appears to be an AMS mass spectral fingerprint for
particles from primary combustion sources and m/z 44 for
oxygenated organic particles that are potentially associated
with secondary organic aerosols or oxygen-containing pri-
mary organic aerosols.

(b) Additional Evidence for Tracer m/z’s from Pittsburgh
Supersite Data. To further justify the use of these two tracer
m/z’s, we present in Figure 1a the time series of m/z 57 and
CO, NOx, and elemental carbon (EC)sall well-known markers
of combustion exhaust (64). Figure 1b shows the time series
of m/z 44 and sulfatesa particulate species that is mainly
formed through gas-phase and aqueous-phase oxidation of
SO2. Good correlations are observed between m/z 57 and
CO (r2 ) 0.75), NOx (r2 ) 0.83), and EC (r2 ) 0.78), supporting
the use of m/z 57 as a first-order tracer for combustion related
hydrocarbon-like organic particles. Good correlation is also
observed between m/z 44 and SO4

2- (r2 ) 0.75) which suggests
that similar sources and/or processes over regional scales
produce SO4

2- and the parent organic species of m/z 44.
These observations are consistent with the size distributions
(Figure 1c)sthose of m/z 44 and sulfate are both dominated
by the accumulation mode, while that of m/z 57 demonstrates
a prominent ultrafine mode that is commonly associated
with combustion aerosols.

a′ ) a1 ‚‚‚ ai ‚‚‚ aNi  (6)

b′ ) b1 ‚‚‚ bi ‚‚‚ bNi  (7)

orgt′ ) ct × a′ + dt × b′ + Et′ (8)

c ) [c1

l
ct

l
cNt

] and d ) [d1

l
dt

l
dNt

] (9)

orgi ) ai ‚ c + bi ‚ d + Ei (10)

OR̂G(n) ) c(n) ‚ a′(n) + d(n) ‚ b′(n) (12)

OR̂Gt,i
(n) ) ct

(n) ‚ ai
(n) + dt

(n) ‚ bi
(n) (13)

Organicst
resid ) ∑

i)1

300

|(OR̂Gt,i
(n) - ORGt,i)| (14)
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FIGURE 4. Results of algorithm 1: (a) time series of the measured organic mass concentration and HOA and OOA estimates (OOA is stacked
on top of HOA); (a′) the scatter plot and linear fit (red line) between measured and reconstructed () HOA + OOA) organic values;
(b) variations of the residual of the fit () measured - HOA - OOA) and the absolute residual (see section entitled “Calculations of
Reconstructed Matrix and Residuals” for calculation) as a function of time; (c) time series of the ratio of the residual to the measured
organic concentration; and (d) the scatter plot between the residuals and measured organic concentration. (a′) and (c) are colored by
the ratio of the residuals to the measured organics.

FIGURE 5. Results of algorithm 2 after 50 iterations: (a) time series of the measured organic mass concentration and HOA and OOA
estimates (OOA is stacked on top of HOA); (a′) the scatter plot and linear fit (red line) between measured and reconstructed
() HOA + OOA) organic values; (b) variations of the residual of the fit () measured - HOA - OOA) and the absolute residual (see section
entitled “Calculations of Reconstructed Matrix and Residuals” for calculation) as a function of time; (c) time series of the ratio of the
residual to the measured organic concentration; and (d) the scatter plot between the residuals and measured organic concentration.
(a′) and (c) are colored by the ratio of the residuals to the measured organics.
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Note that m/z’s 55 (C4H7
+) and 43 (C3H7

+) are two other
prominent peaks in the AMS mass spectra of combustion
exhausts and generally at intensities slightly higher than that
of m/z 57 (41, 44, 51, 55, 62). Yet, m/z 57 is likely a better HOA
mass spectral tracer since m/z’s 55 and 43 tend to be more
influenced by oxygenated organics, e.g., due to C3H3O+ and
C2H3O+, respectively (65). One indication is that by com-
parison a relatively larger fraction of the m/z 57 signals are
found to associate with the small mode particles in ambient
air (51, 62). Further evidence is based on the Pearson’s r
values of the correlations of NOx, CO, and SO4

2- with each
individual m/z’s (Figure 2). Compared to those of m/z 57
(r2

m/z57 vs CO ) 0.75, r2
m/z57 vs NOx ) 0.83) both m/z 55 and m/z

43 show lower r values with NOx and CO (r2
m/z55 vs CO ) 0.65,

r2
m/z55 vs NOx ) 0.72, r2

m/z43 vs CO ) 0.54, r2
m/z43 vs NOx ) 0.57; Figure

2a,b) yet somehow higher r with SO4
2- (Figure 2d).

(c) Association of m/z 44 with Oxygenated Organics.
According to laboratory studies, the CO2

+ ion (m/z 44) is
observed intensely in the AMS mass spectra of di- and
polyacids. The spectra of monoacids and other oxygenated
organic compounds, including carboxylic acids, esters,
carbonyls, and alcohols, also show signals at m/z 44, although
at significantly lower intensity (50) (and unpublished data
from Philip Silva, Utah State University). This is consistent
with standard electron impact (EI) mass spectra of oxygenated
organics (49), except that the corresponding AMS spectra
generally show greater fragmentation (as described above)

and more pronounced m/z 44 and 18 peaks (50) (and
unpublished data from Philip Silva, Utah State University).
Small dicarboxylic acids, for example, clearly undergo
decarboxylation in the AMS and produce considerable signals
at m/z’s 18 (H2O+) and 44 (CO2

+) (50).
In addition to m/z 44, significant m/z 28 signals are also

observed in the standard EI mass spectra of organics that
contain carboxyl, carbonyl, and hydroxyl functional groups
(49). However, the AMS mass spectra of particles are often
presented without the m/z 28 peak due to the difficulty of
removing the overwhelming gaseous N2

+ signals (40) (see
section entitled “Quantification of Particle Signal at m/z 28”).
In this study, we applied a recently developed procedure
(18) to subtract the particulate m/z 28 signals from the AMS
P-TOF data and compared them to the m/z 44 signals (Figure
3). Good correlations are observed between these two m/z’s
in signal intensity (r2 ) 0.71; Figure 3a) as well as in size
distributions (e.g., Figure 3c), despite the comparatively
noisier signals resulting from larger background subtraction
at m/z 28 (see section entitled “Quantification of Particle
Signal at m/z 28”). These findings, together with the
observations that m/z 44 signals progressively increase during
SOA formation according to smog chamber studies (66, 67)
and that the relative intensity of m/z 44 signal increases
almost linearly with the O:C ratio of a range of organic
molecules (50) (and personal communication of Philip Silva,
Utah State University), indicate a strong association of
m/z 44 with oxygenated organic compounds in aerosols.

Note that although amino compounds may produce
significant m/z 44 (C2H6N+) and m/z 28 (CH2N+) peaks as
well (65), these compounds are unlikely to have made
significant contributions to the m/z’s 28 and 44 signals
observed in Pittsburgh particles. For example, the mass
spectra from this study do not show obvious CnH2n+1NH+

ion series pattern, which is characteristic of alkylamines (65)
(e.g., the intensities of m/z 58 and m/z 72 signals are 1-2
orders of magnitude lower than that of m/z 44) (18) and m/z
30 appears to be mostly associated with NO3

- (i.e., being
NO+ rather than CH2NH2

+) (49). This conclusion is consistent
with findings from previous studies that amino compounds
are generally a minor component of atmospheric fine particle
mass (68-72). In addition, the relative intensity of
m/z 44 to m/z 43 signals is ∼1:1 for Pittsburgh aerosols (18)
and thus rules out the possibility of a significant fraction of

FIGURE 6. Scatter plots of (a) the d vector calculated using algorithm
2 after 50 iterations vs org57; and (c) the c vector calculated using
algorithm 2 after 50 iterations vs org44. The red line is the least-
squares linear fit.

FIGURE 7. Scatter plot that compares reconstructed organic mass
spectral signal intensities using algorithm 2 after 50 iterations
(OR̂Gt,i, eq 13) with the measured ones (ORGt,i). ORGt,i and OR̂Gt,i are
the tth row and the ith column elements of measured organic matrix
(ORG) and reconstructed matrix (OR̂G), respectively. See section
entitled “Notation” for details on notation. The red line is the least-
squares linear fit.
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the m/z 44 signals being 13C12C2H7
+, which is expected from

alkyl chains (65).
In summary, m/z 57 and m/z 44 appear to be valid first-

order mass spectral tracers for combustion-related hydro-
carbon-like organic aerosols (HOA) and oxygenated organic
aerosols (OOA), respectively. Note that m/z 44 is linked to
the more broadly defined OOA, instead of secondary organic
aerosols (SOA) because aged POA (73-76) and oxygenated
organic species from primary emissions (77) may be part of
this component. Biomass burning aerosols, for example, often
contain significant amounts of oxygenated organic com-
pounds as a result of oxidation in the burning process or due
to burning of cellulose (1, 78-81). Oxygenated organic
compounds may also be directly emitted from vehicles, but
their mass fraction is very low (a few percent or less of the
total organic mass in the vehicle exhaust) (77) and thus make
a very small contribution to the m/z 44 signal. Nevertheless,
given the good correlations between m/z 44 and sulfate in
size distribution and mass concentration, a significant
fraction of the OOA in Pittsburgh appears to be SOA.

Apportionment of Pittsburgh Organic Mass Spectral
Data. We first attempted to reconstruct the mass concentra-
tions of total organics based on a linear combination of
m/z’s 44 and 57sthe first-order tracers for two major organic
aerosol components. Application of the first step of algorithm
1 (eq 4) yields a ) 7.6 and b ) 12.3, which are multiplied with
the org-eq concentrations of m/z’s 44 and 57, respectively,
to give estimates of OOA () 7.6 ‚ m/z 44) and HOA
() 12.3 ‚ m/z 57; Figure 4a). Excellent agreement is observed
between the measured and reconstructed organic concen-
trations () HOA + OOA), with a linear regression slope (S)

) 0.99, intercept (I) ) -0.01, and r2 ) 0.97 (Figure 4a′). The
ratio of the residual to the measured organics concentrations
varies from -0.61 to 0.58 with an average value of 0.02. The
average ratio of the absolute residual to concentration is
0.08 (Figure 4c).

As shown in Figure 4d, although high residual-to-organic-
ratios are generally associated with low organic concentra-
tions, periods with high residual-to-organic-ratios also
present when the organics loading is high. There are two
possible reasons to explain these deviations: (1) m/z’s 44
and 57 are not perfect HOA and OOA tracers; and (2) particles
from these periods may contain other organic components
that are not well represented by the HOA and OOA categories.
The former possibility may be due to m/z 44 containing some
contributions from organic particles from primary sources,
such as the isotopic peak of m/z 43 (13C12C2H7

+), oxygenated
species in vehicle emissions (77), and oxidized primary
organic aerosols, or m/z 57 may be produced by some
oxygenated organic species such as long chain alcohols or
acids (see section entitled “Identification of Mass Spectral
Tracers for Hydrocarbon-like and Oxygenated Organics”).

We therefore used algorithm 2 (eq 11; section entitled
“Mathematical Formulation”) to mathematically “distill” the
time series and component mass spectra of HOA and OOA.
During the iterations, we observed modest improvement in
ø2’s and r2’s of the fits, but the trends of these figures-of-
merit quickly stabilize after only 3 iterations (i.e., n ) 3 in
eq 11). The comparisons between the improved OOA and
HOA spectral tracers after 50 iterations (i.e., c(50) and d(50))
vs org44 and org57 vectors, respectively, are shown in Figure
6. There is a very high similarity between c(50) and org44

FIGURE 8. Output of the linear covariance analysis that compares the reconstructed organic mass spectral data based on algorithm 2
after 50 iterations with the measured data. (a) Variations of rt

2 and SNRt as a function of time; (a′) the scatter plot that compares rt
2 vs

SNRt; (b) variations of ri
2 and SNRi as a function of m/z; and (b′) the scatter plot that compares ri

2 vs SNRi. rt
2 is the r2 of the correlation

between the organic mass spectrum measured at time t (i.e., orgt′) and the corresponding reconstructed spectrum (or̂gt′). SNRt is the ratio
of the total measured organic signal to the detection limit for organic concentration measurement (D.L. ) 0.15 µg m-3). ri

2 is the r2 of the
correlation between the measured time series of organic signal at m/z ) i (i.e., orgi) and the corresponding reconstructed time series
(i.e., or̂gi). SNRi is the average signal-to-noise ratio for organic fragment m/z ) i. See section entitled “Notation” for notation. Note that
the reason that ri

2’s of m/z’s 16, 17, 18, and 20 are the same as that of m/z 44 is that these signals were set to proportional to the organic
signals at m/z 44 in the current organic analysis procedure (see section entitled “Data Preparation”).
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(S ) 0.999; I ) 0; r2 ) 0.989). The correlation between d(50)

and org57 is slightly lower (S ) 0.974; I ) 0; r2 ) 0.943). In
addition, the biggest discrepancies between d(50) and org57

are observed when the reconstructed organic mass concen-
trations using algorithm 1 show the largest disagreements
with the measured values. These results suggest that while
it is valid to use m/z 57 as a HOA tracer the contribution of
m/z 57 to the mass spectra of HOA is somewhat variable
across sources and/or time periods.

The coefficients from algorithm 2 after 50 iterations (eq
11), i.e., a(50) ) 7.63 and b(50) ) 12.2 (Figure 5a), are very
similar to those from algorithm 1. However, significant
improvements in the fit of the total organic concentration
are observed (Figure 5a,d), indicating a fraction of the residual
in algorithm 1 is due to the imperfect correlation between
the m/z tracers and HOA and OOA mass, especially between
m/z 57 and HOA. Figure 5c,d shows that the residual-to-
organic ratio is almost always below 10%. The values of the
absolute residues between measured and reconstructed
values (eq 14) range from 0.13 to 2.7 µg m-3 (average )
0.48 µg m-3). Since on average the total absolute signal in an
organic mass spectrum of particle-free air is 0.25 µg m-3, this
value sets the lower limit of whether an absolute residue is
statistically different from noise. The absolute residue
generally correlates with the mass concentration of organics,
which is consistent with the expected increase in the noise

with the magnitude of the measurement. However, there are
periods when reconstructed organic values (from algorithm
2) show differences with the measured values and the
absolute residuals are relatively significant. It is likely that
particles from these periods contain a small fraction of the
mass from organic components that are not well represented
by the HOA and OOA categories (e.g. biomass burning or
meat cooking). It is also possible that the mass spectra of the
major components undergo small variations during the study.

We subsequently reconstruct the entire organic matrix
(OR̂G) based on a′(50), b′(50), c(50), and d(50) (eqs 12 and 13).
Shown in Figure 7 is the good correlation between the
reconstructed (OR̂Gt,i) and the measured mass spectral data
(ORGt,i). For a sample size of 8.6 × 105, the linear regression
fit yields an r2 of 0.99 (S ) 0.99 and I ≈ 0). This same plot
also reveals a small population of data points that significantly
depart from the 1:1 line. Since they were observed during
the periods that show the largest discrepancies between
measured and reconstructed total organic concentrations
(Figure 5d), it supports the hypothesis that during certain
time periods additional components are required to fully
account for the variance in the mass spectral signals.
However, the overall contribution of the additional com-
ponents to the total organic signal appears to be small for
this Pittsburgh data set.

FIGURE 9. AMS mass spectra of (a-1) Pittsburgh HOA component, (a-2) diesel bus exhaust (55), (a-3) lubricating oil (55), (a-4) diesel fuel
(55), (a-5) fresh organic aerosol components from Manchester, U.K. (41), (a-6) fresh organic aerosol components from Vancouver, Canada
(41), (b-1) Pittsburgh OOA components (the m/z 28 peak was manually added; see section), (b-2) and (b-3) aged organic aerosols from
Langley, Canada (41), (b-4) oxidize organic aerosols from Vancouver, Canada (41), (b-5) humic acid (50), and (b-6) fulvic acid (50). Sampling
times and locations for these mass spectra are marked. The unit of the mass spectra is percent intensity (% of Σm/zi), i.e., the contribution
of each peak to the total signal (not including m/z 28 for (b-1)) in the corresponding mass spectrum. The right y-axis of (b-1) indicates
the percent intensity of OOA when the m/z 28 peak is included.
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Note that although not shown here, we were able to
reproduce 98% of the variance in the organic spectral data
by using algorithm 1 only. In addition, as will be discussed
in section entitled “Implications”, the extracted HOA and
OOA mass spectra from algorithm 1 also changed little during
the iteration (Figure 12). In other words, despite its simplicity,
algorithm 1 has demonstrated the capability to successfully
capture most of the variance in the time and m/z-resolved
AMS organic data over a period of 16 days in a major urban
area and thus highlights its usefulness for ambient aerosol
studies.

Linear Covariance Analysis. We performed a series of
linear covariance analyses between the organic mass spectral
data and the results of algorithm 2 after 50 iterations, in an
attempt to systematically evaluate the performance of this
method. Figure 8a shows the time series of r2

t (Nt ) 3199)
between measured and reconstructed mass spectra, together
with the signal-to-noise ratios (SNRt) for the corresponding
mass concentration measurements. SNRt were calculated as
the ratio of the measured organic mass concentration during
a time step to the average detection limit () 0.15 µg m-3) of
the AMS measurement for organics during this campaign
(18). SNR > 3 is a standard criterion to distinguish the signal
from noise.

As shown in Figure 8a,a′, the r2
t values are generally higher

than 0.9. Lower r2
t values are observed but mainly associate

with very low SNRt during periods when the organic mass
concentrations are very low. However, there is a small packet
of data (e.g., 19:45-20:45 on September 13th, 2002) with
high SNRt but relatively low r2

t (although still > 0.8; Figure
8a′). Again, particles from these lower r2

t but high SNRt periods
likely contain significant contributions from components
other than the HOA and OOA extracted using these methods.

We then performed the same covariance analysis along
the other dimension of the organic matrix. Figure 8b shows
the r-squares for the correlation between the time series of
measured and reconstructed m/z signal intensities, i.e., r2

i

as a function of m/z (Ni ) 270), together with the average
signal-to-noise ratios of each m/z over the entire period
(SNRi). Similar to the results for r2

t, there is a general trend
for the r2

i values to be higher for the m/z channels that have
higher signal-to-noise ratios. r2

i’s at m/z > 260 are close to
zero since these m/z channels contain extremely low signals
and are almost entirely noise. On the other hand, several
m/z channels, such as m/z’s 60, 75, 101, and 169, show good
SNRi (> 6) but relatively low r2

i (<0.85), possibly due to
association with other components. In principle, the r-square
plots shown in Figure 8 provide an overview of the perfor-
mance of the fit model we developed from this study. This
analysis may be used as guidance for studies with data from
other locations and to help resolve more components in the
particles.

The Mass Spectra of HOA and OOA. Algorithms 1 and 2
also allow us to derive a first and a refined approximation,
respectively, to the component mass spectra of HOA and
OOA (eqs 6 and 7). The word “component” is used since
these two mass spectra are expected to represent mixtures
of many individual organic species associated with the same
sources (or group of sources) and atmospheric processes,
rather than individual species or functional groups. As shown
in Figure 9a-1, the extracted mass spectrum of HOA
demonstrates prominent ion series for hydrocarbons, which
are major components identified in diesel and gasoline engine
exhaust particles, and fuel and lubricating oil, e.g., the
CnH2n+1

+ sequence (m/z 29, 43, 57, 71, 85...) that is particularly
prevalent for alkanes, the CnH2n-1

+ sequence (m/z 27, 41, 55,
69, 83, 97...) that can be produced from H2 neutral loses from
alkyl fragments and/or alkenes, and the CnH2n-3

+ sequence
(m/z 67, 81, 95, 107...) that can arise from cycloalkanes
(41, 55, 65, 82, 83). The ion series that can be associated with
aromatic species (m/z 77, 91, 105, 119) (65) is also observed.

The component HOA mass spectrum is remarkably similar
to the AMS mass spectra of diesel bus exhaust aerosols
sampled during “vehicle chasing” experiments in New York
City (Figure 9a-2) (55). The r2 between these two mass spectra
is 0.98 (S ) 1.02; I ) 0.01; Figure 10a). In addition, the HOA
spectrum also closely resembles those of the more volatile
fraction of lubricating oil and fuel aerosols that were
generated in the lab through nucleation and condensation
of the vapors from hot oil or fuel (55) (Figure 9a-3,9a-4) and
freshly emitted traffic aerosols in two urban locationss
Manchester, U.K. (62) and Vancouver, Canada (41) (Figure
9a-5,9a-6).

The derived component mass spectrum of OOA (Figure
9b-1) demonstrates a starkly different fragmentation pattern
than that of HOA (Figure 9a-1). First of all, the OOA mass
spectrum is dominated by smaller fragments and contains
very little signal at m/z > 55 (60% of the total signal is above
m/z 55 for HOA vs 15% for OOA). Second, the OOA spectrum
is dominated by m/z 44 (CO2

+). The signal at m/z 18 (H2O+)
is set equal to that of m/z 44 in the current organic analysis
procedure based on laboratory studies of carboxylic and
dicarboxylic acids (Philip Silva, personal communication)
and since it is not possible to directly measure this signal
due to interferences with particle-phase water, and with H2O
molecules arising due to the decomposition of ammonium

FIGURE 10. Scatter plots comparing the mass spectrum of (a) derived
HOA from Pittsburgh vs fresh diesel bus exhaust aerosols sampled
during New York vehicle chase study (55) and (b) derived OOA for
Pittsburgh vs aged rural organic aerosols sampled from Vancouver,
Canada (41). The red line is the least-squares linear fit. Intercepts
for both plots are close to zero and thus not shown. Y axes are in
percent intensity (% of Σm/z), i.e., the contribution of each peak to
the total signal in the corresponding mass spectrum. Values marked
adjacent to the data points are the corresponding m/z’s.
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sulfate or sulfuric acid during their evaporation in the AMS
(40). In addition, the OOA spectrum displays a significant
m/z 45 signal (COOH+), a fragment observed from carboxylic
acids (49, 50) and that is nearly zero in the HOA spectrum
(Figure 9a-1). All of these features have been observed for
highly processed organic aerosols in ambient air at several
locations (18, 36, 41, 54, 62).

The derived OOA mass spectrum demonstrates close
similarity in the overall pattern with those of aged/oxidized
organic aerosols in rural and urban areas (Figure 9b-2-9b-
4). A linear regression between the mass spectra of OOA
from this study and that of aged rural organic aerosols from
Langley (the rural site of Vancouver), Canada (41), in
particular, yields S ) 1.02, I ) - 0.01, and r2 ) 0.93 (Figure
10b). In addition, the OOA mass spectrum is qualitatively
similar to the AMS mass spectra of the fulvic and humic
acids (50)sclasses of highly oxygenated organic compounds
that have been proposed as models of the highly oxidized
organic aerosols that are ubiquitous in the atmosphere, based
on their responses to analytical procedures such as proton
nuclear magnetic resonance and Fourier transform infrared
spectroscopy (84) (Figure 9b-5,9b-6).

Figure 11 shows the same set of mass spectra on a log
scale, with the purpose to illustrate the differences between
these mass spectra at high m/z’s. Again, the difference
between OOA and HOA for large m/z is dramatic. The HOA
components produce at least 1 order of magnitude more
signal for the high m/z fragments than the OOA components

do. This is consistent with the correlations shown in Figure
2, which shows that the high m/z fragments correlated better
with CO than with sulfate. Also, among all the spectra, the
extracted OOA spectrum from Pittsburgh contains the least
amount of high m/z fragments, suggesting that the OOA
components in Pittsburgh are either relatively lower in
molecular weight or more prone to fragmentation.

Finally, we compared the HOA and OOA mass spectra
obtained from algorithm 1 vs those from algorithm 2 after
50 iterations (Figure 12). Only minor differences are observed,
but again the changes in the HOA spectrum were larger than
those in the OOA spectrum, indicating that m/z 57 is a less
optimum HOA tracer than m/z 44 is for OOA. As shown in
Figure 9b-1, an important change is a small m/z 57 peak that
appeared in the OOA mass spectrum, which fits the patterns
of the surrounding peaks on the OOA spectrum. The
contribution of m/z 57 to the total signal in the OOA mass
spectrum is ∼0.3%. Although we expect that there should be
an isotopic peak of 13C1

12C2H7
+ (m/z 44) present at an

abundance of 3.3% of the signal intensity of 12C3H7
+ (m/z 43)

(65), the calculated m/z 44 peak in HOA remains close to
zero after iteration. This is due to the very low intensity of
13C1

12C2H7
+ signals (e.g., estimated org-eq concentration of

13C1
12C2H7

+ in HOA is 0.005 µg m-3), which is indistinguishable
from noise.

Implications. The key result of the procedures presented
here is that m/z 44 and m/z 57 are reliable AMS mass spectral
“markers” which allow the quantification of HOA and OOA

FIGURE 11. The log scale AMS mass spectra, corresponding to those shown in Figure 8. Two lines have been added to the mass spectra
to guide the eye: the blue line is an approximate fit to the envelope of the m/z 40-250 range of the log scale mass spectra of Pittsburgh
HOA and the red line to that of Pittsburgh OOA.
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and the extraction of mass spectra that can be interpreted
chemically. Algorithm 1 yields most of the information while
providing the “first guess” for algorithm 2 which is more
quantitative. This simple linear superposition model of only
two components with constant mass spectra reduces the
complexity of aerosol mass spectrometry data by a factor of
∼150 while accounting for most of the variance in the
concentrations and mass spectra of organic aerosols in a
major urban area for a period of 16 days. In addition, the
mass spectra of the two components are remarkably invariant
in time. This contrasts with other apportionment studies
using molecular tracers that identify large numbers of sources,
e.g., ref 23, and may be due to multiple combustion related
sources being lumped under HOA in this study, if their bulk
chemical compositions (as opposed to their tracer concen-
trations) are quite similar. In other words, we believe that
underneath the apparent simplicity of each of the two
components there likely lies considerable complexityse.g.,
compounds that have similar temporal variations or similar
mass spectra are likely grouped together. Aerosols having
significantly different sources/precursors, e.g., biogenic vs
anthropogenic SOA, or traffic vs power plant emission POA,
may not be discriminated by the technique presented here.
We plan to address this point by further developing the
technique so that more components can be extracted and
by comparing with other source apportionment techniques
for simultaneously collected data as part of a currently funded
project.

In a separate paper we interpret the results obtained with
the method described here (algorithm 2) in terms of the
properties of HOA and OOA in the Pittsburgh Supersite data

set, including their diurnal profiles, and compare to previous
results at this and other locations. We also derive the highly
time-resolved size distributions of HOA and OOA by using
a procedure based on these results and explore the implica-
tions of the time series, diurnal profiles, and size distributions
on the sources and process responsible for the observed HOA
and OOA (Zhang et al., in preparation for Atmos. Chem. Phys.).
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